| 代码 | 名称 | 当前价 | 涨跌幅 | 最高价 | 最低价 | 成交量(万) |
|---|
据消息人士称 ,谷歌正在推进一项新计划,使其人工智能(AI)芯片在运行 PyTorch(全球使用最广泛的AI软件框架)方面表现更佳,此举旨在挑战英伟达长期以来在AI芯片领域的主导地位。
谷歌目标是让——其自研芯片张量处理单元(TPU)——成为英伟达GPU的可运行替代方案 ,但仅有硬件并不足以推动广泛采用 。
知情人士称,该计划在谷歌公司内部被称为“TorchTPU ”,旨在消除阻碍TPU芯片普及的一项关键障碍 ,即让已经基于PyTorch软件构建技术基础设施的客户,能够在TPU上获得完全兼容、对开发者友好的体验。
据悉,谷歌正在考虑将部分软件开源,以加快客户采用速度 ,该公司为TorchTPU项目投入了更多组织资源 、战略重视度。
如果谷歌的TorchTPU项目取得成功,将有望显著降低企业从英伟达GPU转向其他方案的切换成本 。
TPU普及面临障碍
尽管越来越多的企业开始尝试采用谷歌的TPU,但却在软件层面遇到障碍。
PyTorch是一个由Meta大力支持的开源项目 ,是AI模型开发者最常用的工具之一。在硅谷,很少有开发者会亲自编写英伟达、AMD或谷歌芯片实际执行的每一行代码 。
相反,开发者依赖 PyTorch 等工具——这些工具由预先编写好的代码库和框架组成 ,能够自动化AI软件开发中的许多常见任务。
PyTorch最初发布于2016年,其发展历程与英伟达的CUDA紧密相连。一些华尔街分析师认为,CUDA是英伟达抵御竞争对手的最强护城河。
多年来 ,英伟达工程师一直致力于确保基于PyTorch开发的软件在其芯片上运行得尽可能快且高效 。
相比之下,谷歌内部开发者团队长期采用另一套名为Jax的代码框架,其TPU芯片则通过名为XLA的工具来高效执行这些代码。谷歌自身的AI软件栈和性能优化大多围绕Jax构建 ,这使得谷歌芯片的使用方式与客户需求之间存在显著差异。
知情人士称,企业客户一直向谷歌反映,TPU在AI工作负载上的采用难度较高,因为过去它们往往要求开发者从大多数人已在使用的PyTorch ,转而切换到谷歌内部更偏好的机器学习框架Jax 。
与Meta合作
知情人士还表示,为加快开发进度,谷歌正在与PyTorch的创建者和主要维护方Meta紧密合作。两家科技巨头还在讨论相关交易 ,让Meta获得更多TPU资源。
早期面向Meta的服务采用谷歌托管模式,即Meta等客户安装谷歌设计的芯片来运行谷歌软件和模型,由谷歌提供运维支持 。
相关人士称 ,Meta在战略上有动力参与让TPU更易运行的软件开发,以降低推理成本,并让自身AI基础设施逐步摆脱对英伟达GPU的依赖 ,从而增强谈判筹码。
(文章来源:财联社)
配资网上炒股平台:配资优秀炒股配资门户-国常会再部署扩大内需 强化财税金融政策支持“两新”
正规股票杠杆:配资网app官方免费下载安装-AI芯片竞赛升级!Meta据悉转向谷歌TPU 英伟达“王位”不稳?
在线配资门户投资:配资正规网上炒股-巴菲特减持苹果!“神秘持仓”曝光
正规的炒股杠杆平台:在线股票配资门户-摩尔线程发布网下初步配售结果及网上中签结果
配资炒股平台网站:正规配资公司官网-欧盟调查谷歌利用网络内容支持AI服务是否违规
正规杠杆炒股官网:安全炒股股票配资门户-谷歌大消息!量子科技尾盘狂飙 杠杆资金最新抢筹股曝光
还没有评论,快来说点什么吧~